
4/2/2015 Writing shell scripts - Lesson 14: Errors and Signals and Traps (Oh My!) - Part 1

http://linuxcommand.org/lc3_wss0140.php 1/8

Errors And Signals And Traps (Oh My!) - Part 1
In this lesson, we're going to look at handling errors during the execution of your scripts.

The difference between a good program and a poor one is often measured in terms of the program's
robustness. That is, the program's ability to handle situations in which something goes wrong.

Exit Status
As you recall from previous lessons, every well-written program returns an exit status when it finishes.
If a program finishes successfully, the exit status will be zero. If the exit status is anything other than
zero, then the program failed in some way.

It is very important to check the exit status of programs you call in your scripts. It is also important that
your scripts return a meaningful exit status when they finish. I once had a Unix system administrator
who wrote a script for a production system containing the following 2 lines of code:

Example of a really bad idea

cd $some_directory
rm *

Why is this such a bad way of doing it? It's not, if nothing goes wrong. The two lines change the
working directory to the name contained in $some_directory and delete the files in that directory.
That's the intended behavior. But what happens if the directory named in $some_directory doesn't
exist? In that case, the cd command will fail and the script executes the rm command on the current

Validation failed. Please retry or wait till
W3C allows validation again

X

4/2/2015 Writing shell scripts - Lesson 14: Errors and Signals and Traps (Oh My!) - Part 1

http://linuxcommand.org/lc3_wss0140.php 2/8

working directory. Not the intended behavior!

By the way, my hapless system administrator's script suffered this very failure and it destroyed a large
portion of an important production system. Don't let this happen to you!

The problem with the script was that it did not check the exit status of the cd command before
proceeding with the rm command.

Checking The Exit Status
There are several ways you can get and respond to the exit status of a program. First, you can
examine the contents of the $? environment variable. $? will contain the exit status of the last
command executed. You can see this work with the following:

[me] $ true; echo $?
0
[me] $ false; echo $?
1

The true and false commands are programs that do nothing except return an exit status of zero
and one, respectively. Using them, we can see how the $? environment variable contains the exit
status of the previous program.

So to check the exit status, we could write the script this way:

Check the exit status

4/2/2015 Writing shell scripts - Lesson 14: Errors and Signals and Traps (Oh My!) - Part 1

http://linuxcommand.org/lc3_wss0140.php 3/8

cd $some_directory
if ["$?" = "0"]; then
 rm *
else
 echo "Cannot change directory!" 1>&2
 exit 1
fi

In this version, we examine the exit status of the cd command and if it's not zero, we print an error
message on standard error and terminate the script with an exit status of 1.

While this is a working solution to the problem, there are more clever methods that will save us some
typing. The next approach we can try is to use the if statement directly, since it evaluates the exit
status of commands it is given.

Using if, we could write it this way:

A better way

if cd $some_directory; then
 rm *
else
 echo "Could not change directory! Aborting." 1>&2
 exit 1
fi

Here we check to see if the cd command is successful. Only then does rm get executed; otherwise an
error message is output and the program exits with a code of 1, indicating that an error has occurred.

4/2/2015 Writing shell scripts - Lesson 14: Errors and Signals and Traps (Oh My!) - Part 1

http://linuxcommand.org/lc3_wss0140.php 4/8

An Error Exit Function
Since we will be checking for errors often in our programs, it makes sense to write a function that will
display error messages. This will save more typing and promote laziness.

An error exit function

error_exit()
{
 echo "$1" 1>&2
 exit 1
}

Using error_exit

if cd $some_directory; then
 rm *
else
 error_exit "Cannot change directory! Aborting."
fi

AND And OR Lists
Finally, we can further simplify our script by using the AND and OR control operators. To explain how
they work, I will quote from the bash man page:

"The control operators && and || denote AND lists and OR lists, respectively. An AND list has the form

http://linuxcommand.org/man_pages/bash1.html

4/2/2015 Writing shell scripts - Lesson 14: Errors and Signals and Traps (Oh My!) - Part 1

http://linuxcommand.org/lc3_wss0140.php 5/8

command1 && command2

command2 is executed if, and only if, command1 returns an exit status of zero.

An OR list has the form

command1 || command2

command2 is executed if, and only if, command1 returns a non-zero exit status. The exit status of AND
and OR lists is the exit status of the last command executed in the list."

Again, we can use the true and false commands to see this work:

[me] $ true || echo "echo executed"
[me] $ false || echo "echo executed"
echo executed
[me] $ true && echo "echo executed"
echo executed
[me] $ false && echo "echo executed"
[me] $

Using this technique, we can write an even simpler version:

Simplest of all

4/2/2015 Writing shell scripts - Lesson 14: Errors and Signals and Traps (Oh My!) - Part 1

http://linuxcommand.org/lc3_wss0140.php 6/8

cd $some_directory || error_exit "Cannot change directory! Aborting"
rm *

If an exit is not required in case of error, then you can even do this:

Another way to do it if exiting is not desired

cd $some_directory && rm *

I want to point out that even with the defense against errors we have introduced in our example for the
use of cd, this code is still vulnerable to a common programming error, namely, what happens if the
name of the variable containing the name of the directory is misspelled? In that case, the shell will
interpret the variable as empty and the cd succeed, but it will change directories to the user's home
directory, so beware!

Improving The Error Exit Function
There are a number of improvements that we can make to the error_exit function. I like to include
the name of the program in the error message to make clear where the error is coming from. This
becomes more important as your programs get more complex and you start having scripts launching
other scripts, etc. Also, note the inclusion of the LINENO environment variable which will help you
identify the exact line within your script where the error occurred.

#!/bin/bash

4/2/2015 Writing shell scripts - Lesson 14: Errors and Signals and Traps (Oh My!) - Part 1

http://linuxcommand.org/lc3_wss0140.php 7/8

A slicker error handling routine

I put a variable in my scripts named PROGNAME which
holds the name of the program being run. You can get this
value from the first item on the command line ($0).

PROGNAME=$(basename $0)

error_exit()
{

--
Function for exit due to fatal program error
Accepts 1 argument:
string containing descriptive error message
--

 echo "${PROGNAME}: ${1:-"Unknown Error"}" 1>&2
 exit 1
}

Example call of the error_exit function. Note the inclusion
of the LINENO environment variable. It contains the current
line number.

echo "Example of error with line number and message"
error_exit "$LINENO: An error has occurred."

The use of the curly braces within the error_exit function is an example of parameter expansion.
You can surround a variable name with curly braces (as with ${PROGNAME}) if you need to be sure it
is separated from surrounding text. Some people just put them around every variable out of habit.

4/2/2015 Writing shell scripts - Lesson 14: Errors and Signals and Traps (Oh My!) - Part 1

http://linuxcommand.org/lc3_wss0140.php 8/8

That usage is simply a style thing. The second use, ${1:-"Unknown Error"} means that if
parameter 1 ($1) is undefined, substitute the string "Unknown Error" in its place. Using parameter
expansion, it is possible to perform a number of useful string manipulations. You can read more about
parameter expansion in the bash man page under the topic "EXPANSIONS".

© 2000-2015, William E. Shotts, Jr. Verbatim copying and distribution of this entire article is permitted in any medium, provided
this copyright notice is preserved.

Linux® is a registered trademark of Linus Torvalds.

http://linuxcommand.org/lc3_man_pages/bash1.html
mailto:bshotts@users.sourceforge.net

